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Quantum Theory of a Friedmann Field 

A l e x a n d e r  P a v l o v  1 

Received May 23, 1994 

A quantum theory of a generalized closed Friedmann model, with a dust of 
negative "masses" filling the universe, is constructed. It is shown that the second 
quantization procedure allows one to avoid having to interpret the dust mass as 
negative on the classical level of description. A difficulty in introducing a 
probability character to the wave function of the universe also is solved. Finally, 
after realizing this standard method of describing physical fields used in the theory 
of elementary particles, a quantum theory of Friedmann universes is constructed. 

Einstein theory of gravity and quantum mechanics have strongly influ- 
enced our world outlook. The unification of these theories, quantum geometro- 
dynamics, is still under construction. Each stage is obtained by hard work 
demanding, first of all, development of one's limited human imagination. In 
a quarter century of active elaboration of quantum geometrodynamics begin- 
ning with the paper of De Witt (1967), some of the mysterious aspects of 
this undertaking have been probed. In particular, many papers, including the 
recent important publications of Vilenkin (1989), Hosoya and Morikawa 
(1989), and Kiefer and Singh (1991), have treated the interpretation of the 
wave function obeying the Wheeler-De Witt functional differential equation 

~2 c 4 16~rGh2 Gukl(r ) 
C2 ~'~ij (r)~'ykt (r) 16~rG x/~ (3)R 

-t- fflm('Yij(r), O(r))]~[~/i l(r) ,  dP(r)] = 0 (1) 

Here ~/ij(r) is the metric of 3-space, "y is the determinant of the metric tensor, 
through O(r)  symbolically marked in materials fields (O(r) is some field 
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interacting with gravity), (3)R is the Ricci scalar of 3-space, and Gijkt is the 
metric of the superspace, 

1 
Gijkt = ~ "Y-l/2('Yik ~ljt + "~il ~tjk - -  " Y i j ' Y k l )  (2) 

This paper will try to clear up what �9 means on the basis of iso- 
tropic universes. 

The 6-dimensional configuration space {~/gj } has hyperbolic signature. 
The Laplace-Beltrami operator (1) is defined on this space. 

Now it does not seem surprising that the wave function does not depend 
on a time coordinate t; by virtue of this one would think there is no dynamics 
of the gravitational field. In general relativity time is introduced as an arbitrary 
coordinate (mark) on which the physics of phenomena does not depend, but 
the true physically meaningful time is defined from intrinsic geometrical and 
material characteristics of the investigated system (see, e.g., Pavlov, 1993). 
The universe's time and space characteristics were born together with the 
universe itself and it is necessary to search for them among the coordinates 
of the superspace--the arena of the development of the world. 

The following legitimate question arises: The Wheeler-De Witt equation 
for gravity without matter being of hyperbolic type (which will also be true 
in our investigated models), is it possible to construct from the conservation 
law for the probability current a nonnegative-definite quantum mechanical 
probability density? A similar problem faced physicists at the dawn of the 
development of quantum mechanics. 

We consider models of isotropic universes filled with an elastic gas with 
the compressibility law 

= c2p q- otp n (3) 

where e is a volume density of the energy of matter, c is the speed of light, 
p is the volume density of matter, oL is a constant, and n is a real parameter, 
4/3 --< n --< 2. For simplicity in writing the formulas, we put 16"trG/3 = 1, 
c = 1, and h = 1 and normalize the functional of the action for the volume V: 

f fsin xl 
V = [ sh2• [ sin 0 d X dO dq~ 

Lx J 
combining all these cases of isotropic models. Then the functional takes 
the form 
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n -- l ( .  f/(~- 1) + n ~ l / n _ _ l f d x l N a ( 3 n  4)/(n 1 ) N _  a (4) 

where x I is a parameter, N is a lapse function, a is a scale of the universe, 
k = 1 for a closed model, k = 0 for a flat one, and k = - 1  for an open 
one, and (r/(Na) is the mass density of the enthalpy of the gas. It is interesting 
that the case n = 4/3, as is seen from (4), stands out and corresponds to the 
most physically important situation when in the case of strongly compressed 
matter the equation of state of the gas is of ultrarelativistic type and in 
the case of weakly compressed matter it is of  dust-like type. Later we put 
n = 4/3. 

The Hamiltonian constraint takes the form 

1 2 k a2 otp4/3 
q~o = - ~  Pa - ~ + + a p ,  (5) 

where Pa and p~ are variables canonically conjugate to a and or, and p,~ is 
the mass of the dust of the universe (Burlankov et  al., 1984). Let us substitute 
the parameter A for a: ot --= (3/4)A 2/3. 

In B urlankov et al. (1984)  and Pavlov (1992a,b) physical considerations 
led to consideration of nonnegative values ofp~ only. This led to the consis- 
tency of the constructed quantum theories with the classical solutions: the 
quantum average values of the wave packets move along the classical trajecto- 
ries consistent with the Ehrenfests theorem. But as there are no requirements 
in principle for excluding negative masses in general relativity (Bondi, 1957), 
we expand the interval of  p~ to - ~  < p~ < + ~  in this paper. The symbol 
p~ denotes a value like the mass of a substance. It can be called a mass; 
however, we have to bear in mind that the concept of the mass of a completely 
closed universe absolutely has no reasonable definite physical meaning (Mis- 
ner et al., 1973). There is no platform outside of the universe where we could 
measure its mass by its interactions, or study periods of some Kepler orbits, 
or by some other method. Refusing the attractive quantum mechanical concep- 
tions that allowed the principle of correspondence, it is possible to construct 
a correct quantum theory of a Friedmann field with a positive spectrum of 
particle masses. 

For the closed and the open models one takes a canonical univalent 
mapping (a, pa; cr, p~) ~ (x, Px; t, Pt): 

x = a - kp~, t = cr - kp~ 

Px = Pa, Pt  = P~  (6) 
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The Hamilton equations after the transformation are 

dx dt 
dr I Px, d'q Pt + (A2pt) 1/3 

dpx dpt 
- - = k x ,  - - = 0  
d'q d-q 

1 2 k 2 1 3 p; + ~ x  = ~ p ~  +~(apt2)  2/3 (7) 

The structure of the equations is quite clear: we have to deal with the 
expanded phase system of an oscillator (antioscillator) where t is the true 
time and Pt is the Hamiltonian canonically conjugate to the time t. But now 
there is also included into the classical mechanics a movement of particles 
with a negative energy Pt and an oppositely directed arrow of time t. 

Let us go to the quantum level of description of the system in Dirac's 
approach and consider the case k = 1. The quantum Wheeler-De Witt 
equation after the Fourier transformation 

t~(t, x) = f dp, exp(itpt)t~(pt, x) (8) 

which in the classical language of description also corresponds to a univalent 
mapping, is 

[ 1 d2 l x z - E ( p t ) ] ~ ( p t ,  2 + -~ (9) 

where the notation for the function E(pt) is introduced: 

3 
E(pt) =- ~ p2 + .~ (apZt)~/3 (10) 

corresponding to the massless particle of Klein-Gordon-Fock in the field 
of the harmonic oscillator. Representing the solution of (9) in terms of Hermite 
polynomials, we get 

~(t, x) ~ dp, exp(itpt) ~, a.(p3 exp(-x2/2) Hn(x) g(E(pt) - en) (11) 
n=O 

where a~(pt) are complex coefficients and e~ = n + 1/2 is the spectrum of 
the harmonic oscillator. One calculates the integral using the representation 
of the g-function 

g(E(pt) - ~,,) = [g(Pt - P,(~,,)) + g(P, + pt(e,,))]llOE(pt)/Optl~,, 
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and gets the solution of the quantum problem: 

[ 1 ~1/2 exp(-x2/2) 

• [b*(E.) exp(iE.t) + a.(E.) exp(-iE.t)] (12) 

where E. - pt(e.) are positive roots of the algebraic equation 

1E  z + 3  ~ (AE~) 2/3 = n + 1/2 (13) 

So the energy spectrum of the system is not equidistant. 
The Born interpretation of the t~-function turns out to be infeasible, as 

follows already from the two-valuedness of the function E-l  = E-l(pt). The 
solution combines positive-frequency and negative-frequency modes. We 
consider the t~-function as complex (a. v s b.), without restricting the content 
of the model. 

Let us consider for simplicity the case A ---) 0, i.e., the Friedmann model. 
Then the energy spectrum of the states is E. = (2n + 1) 1/2. To investigate 
the dynamical characteristics of the solutions, we build the functional of 
the action 

f f  oo, o, 0o,0, ) S = dt dx ~E = dt dx \ Ot Ot Ox Ox ~*x2~ (14) 

which we minimize on the class of the functions (12): 
co 

~(t, x) = ~, u.(x) 1 .=0 (2[E.l)l/z [b*(E.) exp(iEnt ) + a.(E.) exp(-iEnt)] 

We find the Hamiltonian H, introducing the momentum density "rr: 

H = f dx (~*+* + ~ + -  ~ ) =  ~ E.(b,b* + a'nan) (15) 
J n = 0  

The equation of continuity will be obtained from the equations of motion 

8S ~S 
- 0 ,  - 0  ~qJ ~ *  

0t [i(O*Ott~ - +c3;qj*)] + ~xx (t~*Ox, - *0xt~*) = 0 (16) 

Let us calculate the charge Q = f dx p(x): 

Q = ~ ( a * a . -  b*b.) (17) 
n=0 



966 Pavlov 

The one-time commutation relations 

[t~(t, x), 7r(t, y)] = i~(x - y) 

are satisfied if 

[a., a +] = [b,,, b +] = 8.m (18) 

and all other pairs of operators commute. Using the algebraic relations (18), 
+ and an create and destroy it is not difficult to deduce that the operators a.  

the quanta of the field a, and the operators bn + and b. create and destroy 
those of the field b. The operators 

+ ~[n -- b+b. Nn = an an, 

commute with the Hamiltonian and between themselves. They are the opera- 
tors of the number of particles and antiparticles, so with their help one can 
construct the basis of the quantum states. The vacuum state [0) does not 
contain particles and antiparticles at all. It corresponds to the state "nothing" 
when space and time are absent. The Fock space of the universes and the 
antiuniverses are made of the vectors of the states 

1 
Inl, n 2  . . . . .  nl, n 2  . . . .  ) = (hi!n2!...)1/2 [a~(]nl[a~]n2"'" 

X [b{]nl[b~]n2""lO ) (19) 

which corresponds to bosons. The operator of the Hamiltonian (15) after 
second quantization takes the form 

H = En(a+~an + + bnbn + 1) = ~ En(Nn + Nn + 1) (20) 
n = 0  n = 0  

Its eigenvalues are positive. So the problem of "negative energies" (negative 
masses of the dust P0) is solved. The energy of the vacuum, as in the theory 
of elementary particles, is infinite. The charge Q of the field of the universes 
and antiuniverses 

r162 

Q = ~] (Am- N~) (21) 
n = 0  

commutes with the Hamiltonian H and so is conserved and by definition is 
equal to the difference between the number of worlds and the number of 
antiworlds. A world and an antiworld differ only by a certain quantum number 
which could have an arbitrary nature; we called it a charge. A world carries 
a charge + 1, the charge of an antiworld is -1 .  Both enter into the theory 
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symmetrically: they coexist. In order to distinguish them physically, it is 
necessary to introduce an interaction between them. 

Returning to the wave function of the universe (12), which is the operator 
of creating antiparticles and destroying particles, we underline that the ques- 
tion of the localization of universes in the Wheeler-De Witt superspace now 
has no physical meaning. The departure from the probability interpretation 
rules out such inappropriate questions. 

We notice yet that from an abstract contemplator's point of view measur- 
ing his time with the parameter Xl, every universe has its own clock. The 
velocity of the flow of a universe's time depends on the mass of the dust 
(7), i.e., the many-times formalism holds (Wentzel, 1949). 

The dramatic peculiarity of the introduced representation is a multitude 
of universes and antiuniverses: They can be created and annihilated, if the 
difference between their numbers is constant, in accordance with the laws 
of the quantum field theory formalism. We are used to a change of numbers 
of elementary particles in high-energy physics: acts creating and annihilating 
particles are ordinary events registered in physical laboratories. But the trans- 
ference of the formalism of second quantization into quantum cosmology 
demands inevitably the modification of the Copenhagen doctrine about the 
quantum nature of matter. In quantum geometrodynamics ~(q) describes not 
only the physical state of the system, but also the state of the hypersurface, 
i.e., the observer himself. What is more, after using second quantization we 
come to a many-worlds conception. The philosophical basis of such unusual 
representations (Everett's interpretation of quantum gravitation) was prepared 
in the 1950s (Everett, 1957; Wheeler, 1957). But such problems are quite 
new to physics because the object of investigation can be presented by 
processes taking place in another universe also existing in reality but topologi- 
cally not connected with ours. 
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